



Presentamos a ustedes nuestro sistema para tratamiento de aguas residuales, municipales integrado modular para el manejo de medianos y grandes volúmenes de aguas residuales. Somos los mayores constructores en tanques modulares armables en sitio en fibra de vidrio, diseñados y adecuados especialmente para el tratamiento de aguas residuales con diferentes procesos, entre los que se encuentra, aeróbicos, anaeróbicos, uasb, decantadores de alta rata, etc. Todos estos con nuestras tecnologías patentadas de armado en sitio; nuestros reactores de proceso (tanques) pueden contener volúmenes hasta de 2.000 m3, permitiendo el tratamiento de grandes poblaciones.

## CONTENIDO

SIEMPRE UN PASO POR DELANTE

POLÍMEROS AVANZADOS SISTEMAS DE RESINAS

ESPECIFICACIONES DE LOS MATERIALES

CARACTERISTRICAS DE RESISTENCIA

MÁS DE 30 AÑOS DE GARANTÍA CAPACIDAD DE NUESTROS TANQUES

CUBIERTAS ESPECIALIZADAS

CALIDAD Y RESISTENCIA KNOW HOW

ACCESORIOS OPCIONALES 12

CUMPLIMOS CON NORMATIVAS 5

PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES MODULARES

VENTAJAS DE LOS TANQUES ESPESADORE Y DECANTADORES

DECANTADORES, ESPECIFICACIONES

TÉCNICAS

CUBIERTAS

INDUSTRIAS DIRIGIDAS

FINANCIAMIENTO











## POLÍMEROS AVANZADOS

CONTAMOS, con la más alta tecnología en fibras unidireccionales compuestas de vidrio, carbono y kevlar, que generan excepcionales características de RESISTENCIA ESTRUCTURAL, MECÁNICA Y QUÍMICA. El tipo de fibra se utiliza de acuerdo con la necesidad de implementación del tanque.

La naturaleza de las moléculas que componen el desarrollo de estos polímeros reforzados, producen estructuras perfectamente ordenadas, fuertes y ligeras.

La variedad de resina que manejamos, brinda una protección interna y externa al medio que estará en contacto (la atmósfera para los tanques exteriores) y (el tipo de fluido que contendrá el tanque). Esta mezcla perfecta garantizara una vida útil de más de 50 años, superior al acero y el concreto





## SISTEMAS DE RESINAS

- O Resina de poliéster
- Resina de poliéster insaturada
- Resinas isoftálicas
- Resina isoftálica resistente a la corrosión
- Resinas halogenadas
- Resinas ortoftálicas
- Resinas viniléster
- O Resinas Tereftálicas



### ESPECIFICACIONES DE LOS MATERIALES

#### COMPOSICIÓN DE LA PLACA

#### Barrera química exterior:

-Gel coat isoftático 600 µm (calidad náutica) con estabilizador UV.

#### Laminado:

- Fibra de vidrio multiaxial balanceado, específicamente fabricado para la aplicación.
- -Velo de superficie, alta capacidad de absorción.
- -Resina especifica para el proceso de infusión por vacío flexmolding en calidad viniléster.
- -Resina con calidad alimentaria.

#### Acabado interior

- Soporte interior acabado en resina isoftálica enriquecida con velo de superficie de alta capacidad de absorción de resina.
- Solo en alimentaria o alta resistencia química aplicación de gel coat específico para el proyecto con acabado 500 µm.

| RESINA ISOFTÁLICA                                                  |
|--------------------------------------------------------------------|
| <ul> <li>50°C</li> <li>70°C</li> <li>30°C</li> <li>30°C</li> </ul> |
| <ul><li>70°C</li><li>30°C</li><li>30°C</li></ul>                   |
| • 30°C<br>• 30°C                                                   |
| • 30°C                                                             |
|                                                                    |
| ● 30°C                                                             |
| • 50 0                                                             |
| ● 30°C                                                             |
|                                                                    |
| ● 30°C                                                             |
|                                                                    |
|                                                                    |
| •                                                                  |
| •                                                                  |
| ● 30°C                                                             |
| ● 30°C                                                             |
| ● 30°C                                                             |
| • 30°C                                                             |
| •                                                                  |
| •                                                                  |
| •                                                                  |
| •                                                                  |
|                                                                    |

Para resistencia a productos químicos agresivos y temperaturas elevadas se fabrica en viniléster.

RecomendadaNo Recomendada



## CARACTERÍSTICAS DE RESISTENCIA DE LAS FIBRAS

| CARACTERISTICAS                                        | NORMAS ASTM | VALORES |  |  |  |
|--------------------------------------------------------|-------------|---------|--|--|--|
| Peso específico (g/cm3) a 23° C                        | D-792       | 1,8     |  |  |  |
| Resistencia a la tracción, kg/cm2                      | D-638       | 630     |  |  |  |
| Resistencia a la flexión, kg/cm2 a 25°C                |             |         |  |  |  |
| Resistencia a la flexión, kg/cm2 a 130°C               | D-790       | D-790   |  |  |  |
| Resistencia a la compresión, kg/cm2                    | D-965       | 2100    |  |  |  |
| Impacto Izos. Cm, kg/cm2 con entalla                   | D-256       | 42,8    |  |  |  |
| Absorción de Agua 24 h %                               | D-570       | 0,6     |  |  |  |
| Resistencia dieléctrica, perpendicular volts./0,025 mm | D-257       | 400     |  |  |  |





# MÁS DE 30 AÑOS DE GARANTIA EN NUESTRAS PLANTAS

Los tanques de proceso o reactores biológicos han sido diseñados para ser armados en sitio con un sistema de atornillamiento estructural, que permite integrar un sin número de paneles construidos en fibras compuestas de alta resistencia mecánica comparada con el acero. Son livianos y de fácil transporte, permitiendo llevarse por pequeñas vías o áreas de difícil acceso, no requieren ningún tipo de mantenimiento puesto que son 100% inoxidables, pueden construirse en tamaños individuales desde 50 m3 hasta 2000 m3, sus capacidades alcanzan a tratar más de 400 m3 hora de aguas residuales.





# CAPACIDAD DE NUESTROS TANQUES



| Número de<br>placas | Volúmenes de depósitos para distintas alturas en metros |       |              |       |              |       |              |       |              |       |              |       |              |       |              |       |
|---------------------|---------------------------------------------------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------|--------------|-------|
|                     | H=                                                      | :2    | H=           | :3    | H=           | 4     | H=           | :5    | H=5          | 5.5   | H=           | 6     | H=           | 7     | H=           | 8     |
| Unidades            | Vol.<br>(m³)                                            | Ø (m) | Vol.<br>(m³) | Ø (m) | Vol.<br>(m³) | Ø (m) | Vol.<br>(m³) | Ø (m) | Vol.<br>(m³) | Ø (m) | Vol.<br>(m³) | Ø (m) | Vol.<br>(m³) | Ø (m) | Vol.<br>(m³) | Ø (m) |
| 6                   | 31                                                      | 4.4   | 46           | 4.4   | 62           | 4.4   | 77           | 4.4   | 81           | 4.3   | 88           | 4.3   | 103          | 4.3   | 118          | 4.3   |
| 7                   | 42                                                      | 5.2   | 63           | 5.2   | 84           | 5.2   | 105          | 5.2   | 110          | 5.1   | 120          | 5.1   | 140          | 5.1   | 160          | 5.1   |
| 8                   | 55                                                      | 5.9   | 82           | 5.9   | 110          | 5.9   | 131          | 5.8   | 144          | 5.8   | 157          | 5.8   | 183          | 5.8   | 209          | 5.8   |
| 9                   | 69                                                      | 6.6   | 104          | 6.6   | 139          | 6.6   | 166          | 6.5   | 182          | 6.5   | 199          | 6.5   | 232          | 6.5   | 265          | 6.5   |
| 10                  | 86                                                      | 7.4   | 128          | 7.4   | 171          | 7.4   | 204          | 7.2   | 225          | 7.2   | 245          | 7.2   | 286          | 7.2   | 327          | 7.2   |
| 11                  | 103                                                     | 8.1   | 155          | 8.1   | 198          | 8.1   | 247          | 7.9   | 272          | 7.9   | 297          | 7.9   | 346          | 7.9   | 396          | 7.9   |
| 12                  | 123                                                     | 8.9   | 177          | 8.9   | 235          | 8.9   | 294          | 8.7   | 324          | 8.7   | 353          | 8.7   | 412          | 8.7   | 471          | 8.7   |
| 13                  | 138                                                     | 9.4   | 207          | 9.4   | 276          | 9.4   | 345          | 9.4   | 380          | 9.4   | 414          | 9.4   | 483          | 9.4   | <i>552</i>   | 9.4   |
| 14                  | 160                                                     | 10.1  | 240          | 10.1  | 320          | 10.1  | 400          | 10.1  | 440          | 10.1  | 480          | 10.1  | 561          | 10.1  | 641          | 10.1  |
| 15                  | 184                                                     | 10.8  | 276          | 10.8  | 368          | 10.8  | 460          | 10.8  | 506          | 10.8  | 551          | 10.8  | 643          | 10.8  | 735          | 10.8  |
| 16                  | 209                                                     | 11.5  | 314          | 11.5  | 418          | 11.5  | 523          | 11.5  | 575          | 11.5  | 627          | 11.5  | 732          | 11.5  | 837          | 11.5  |
| 17                  | 236                                                     | 12.3  | 354          | 12.3  | 472          | 12.3  | 590          | 12.3  | 649          | 12.3  | 708          | 12.3  | 826          | 12.3  | 944          | 12.3  |
| 18                  | 265                                                     | 13.0  | 397          | 13.0  | 529          | 13.0  | 662          | 13.0  | 728          | 13.0  | 794          | 13.0  | 926          | 13.0  | 1,059        | 13.0  |
| 19                  | 295                                                     | 13.7  | 442          | 13.7  | 590          | 13.7  | 737          | 13.7  | 811          | 13.7  | 885          | 13.7  | 1,032        | 13.7  | 1,179        | 13.7  |
| 20                  | 327                                                     | 14.4  | 490          | 14.4  | 653          | 14.4  | 817          | 14.4  | 898          | 14.4  | 980          | 14.4  | 1,143        | 14.4  | 1,307        | 14.4  |
| 21                  | 360                                                     | 15.1  | 540          | 15.1  | 720          | 15.1  | 900          | 15.1  | 990          | 15.1  | 1,080        | 15.1  | 1,260        | 15.1  | 1,441        | 15.1  |
| 22                  | 395                                                     | 15.9  | 593          | 15.9  | 790          | 15.9  | 988          | 15.9  | 1,087        | 15.9  | 1,186        | 15.9  | 1,383        | 15.9  | 1,581        | 15.9  |
| 23                  | 432                                                     | 16.6  | 648          | 16.6  | 864          | 16.6  | 1,080        | 16.6  | 1,188        | 16.6  | 1,296        | 16.6  | 1,512        | 16.6  | 1,728        | 16.6  |
| 24                  | 470                                                     | 17.3  | 705          | 17.3  | 941          | 17.3  | 1,176        | 17.3  | 1,293        | 17.3  | 1,411        | 17.3  | 1,646        | 17.3  | 1,881        | 17.3  |
| 25                  | 510                                                     | 18.0  | 765          | 18.0  | 1,021        | 18.0  | 1,276        | 18.0  | 1,403        | 18.0  | 1,531        | 18.0  | 1,786        | 18.0  | 2,041        | 18.0  |
| 26                  | 552                                                     | 18.7  | 828          | 18.7  | 1,104        | 18.7  | 1,380        | 18.7  | 1,518        | 18.7  | 1,656        | 18.7  | 1,932        | 18.7  | 2,208        | 18.7  |
| 27                  | 595                                                     | 19.5  | 893          | 19.5  | 1,190        | 19.5  | 1,488        | 19.5  | 1,637        | 19.5  | 1,786        | 19.5  | 2,083        | 19.5  | 2,381        | 19.5  |
| 28                  | 640                                                     | 20.2  | 960          | 20.2  | 1,280        | 20.2  | 1,600        | 20.2  | 1,760        | 20.2  | 1,920        | 20.2  | 2,240        | 20.2  | 2,560        | 20.2  |
| 29                  | 687                                                     | 20.9  | 1,030        | 20.9  | 1,373        | 20.9  | 1,716        | 20.9  | 1,888        | 20.9  | 2,060        | 20.9  | 2,403        | 20.9  | 2,746        | 20.9  |
| 30                  | 735                                                     | 21.6  | 1,102        | 21.6  | 1,469        | 21.6  | 1,837        | 21.6  | 2,021        | 21.6  | 2,204        | 21.6  | 2,572        | 21.6  | 2,939        | 21.6  |





Ofrecemos una amplia gama de cubiertas para nuestros tanques de almacenamiento, estas han sido desarrolladas con distintos diseños estructurales que incluyen sistemas auto soportados, soportados sobres estructura, tapas planas, toriesféricas las cuales se construyen en acero y/o materiales compuestos como la fibra de vidrio. Cada uno de nuestros diseños son dirigidos a las diferentes necesidades de implementación o uso de nuestros tanques, utilizamos los mismos sistemas constructivos modulares por atornillamiento que nos permite construir cubiertas de alta calidad y estructuración de manera rápida.

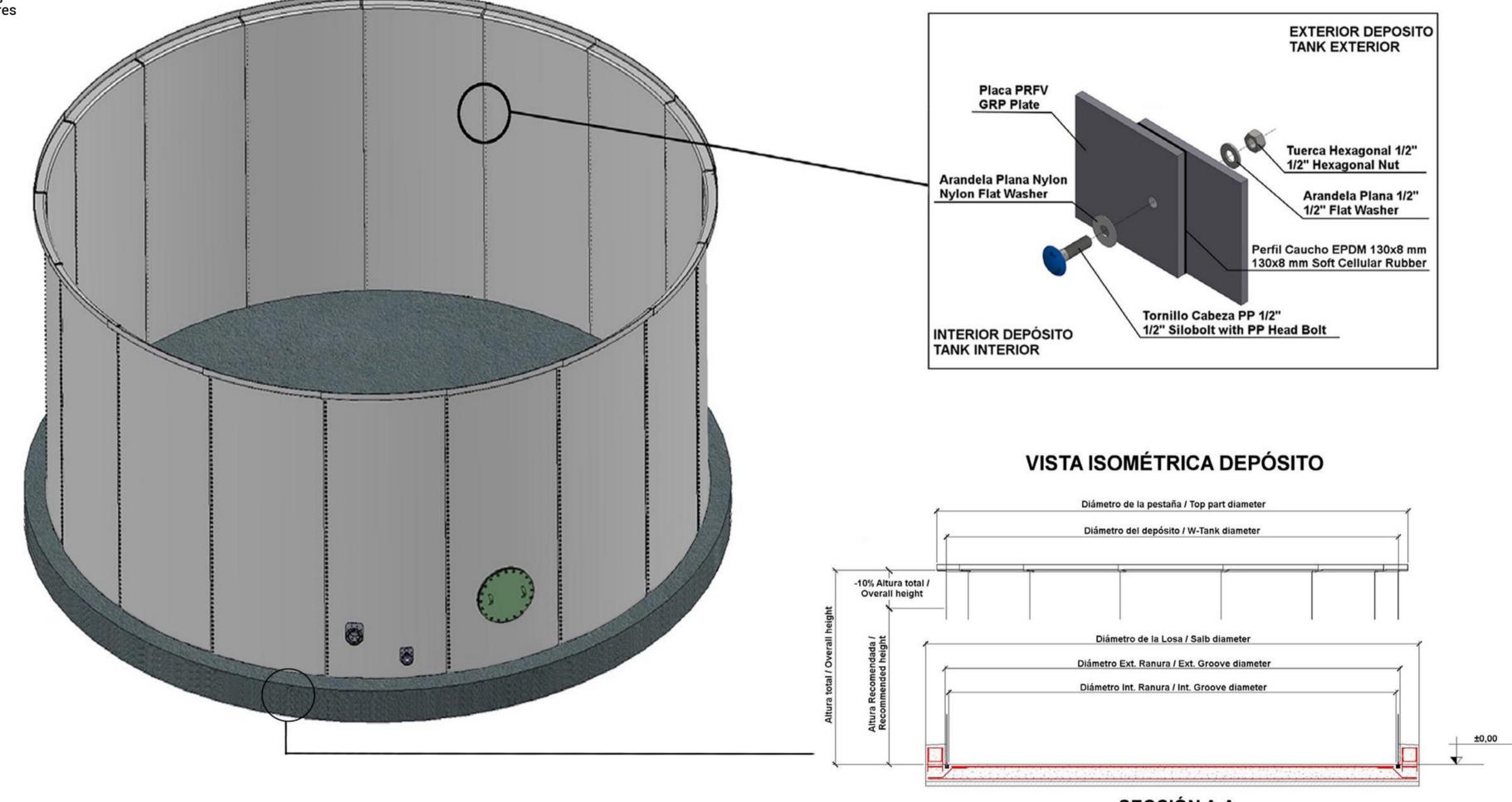


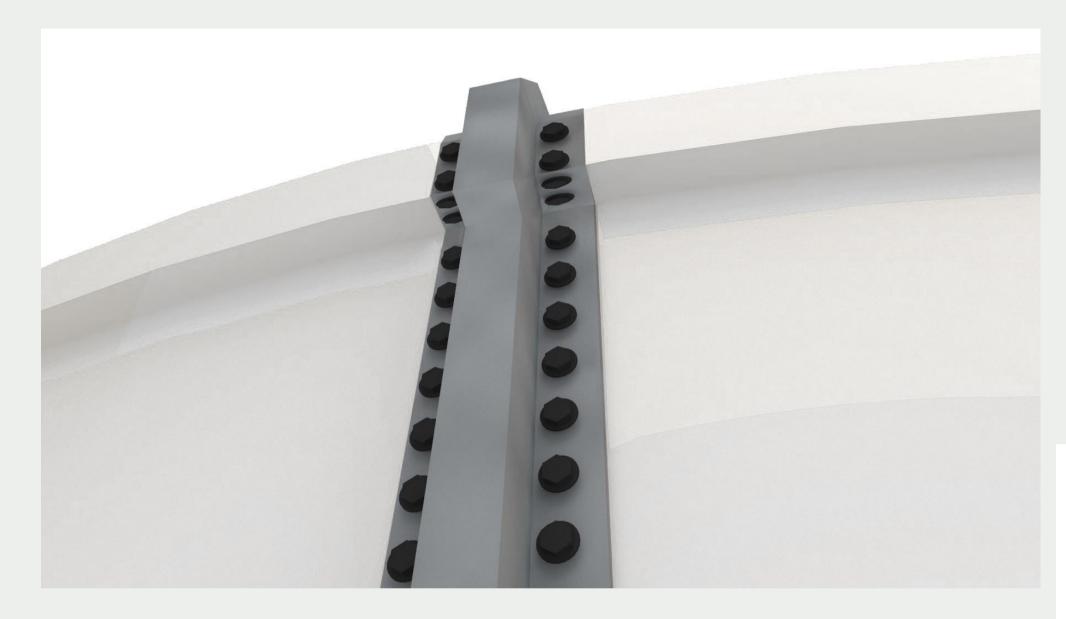




## ENFOQUE SIN FLUCTUACIONES SOBRE LA CALIDAD Y RESISTENCIA

Cada una de nuestras piezas es testeada rigurosamente en cada etapa del proceso de fabricación, desde la entrada de su materia prima hasta el armado final. Pasando, por lo menos en 5 etapas de control global, riguroso, y documentado con hojas de seguridad.


Nuestro compromiso con el sistema de gestión de calidad aumenta la satisfacción de nuestros clientes, potencia la innovación e impulsa el desarrollo profesional de nuestros empleados.


(i) CONSTRUIMOS POR SISTEMAS DE ATORNILLAMIENTO ESTRUCTURAL





PRODUCTO:
Tanques
Modulares

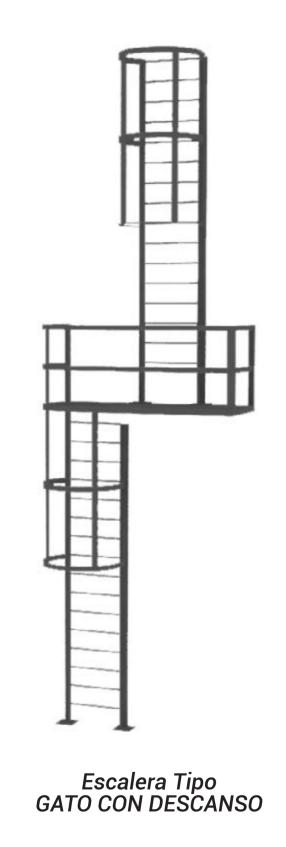


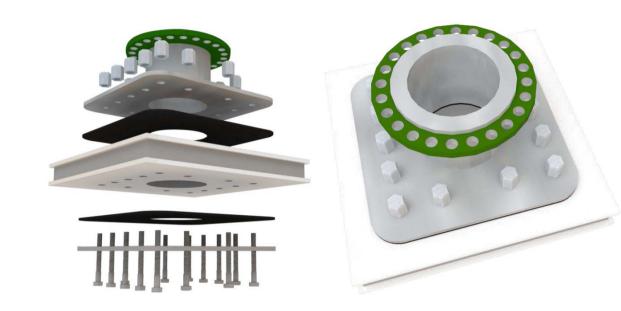


#### POLÍMEROS AVANZADOS Y FÁCIL TRANSPORTE

Utilizamos polímeros avanzados especiales de alta durabilidad, los cuales ofrecen una alta resistencia a agentes corrosivos presentes en el ambiente. Utilizamos diferentes Gelcoat según el producto a almacenar. Para el armado del tanque, se utilizan una serie de paneles homogéneos (en tamaño), que, unidos entre sí por técnicas especiales de armado, garantizan volúmenes entre 50 y 3000 m3 almacenados por unidad

#### SON PERNADOS Y EN FIBRA DE VIDRIO


Conocedores de los altos esfuerzos mecánicos de los tanques de almacenamiento de agua potable, nuestros tanques se fabrican con técnicas de pernado y atornillado estructural confiables, complementado con recubrimientos especiales retardantes a la acción del fuego, estos recubrimientos son realizados en las paredes tanto internas como externas del tanque cumpliendo con las normativas internacionales.






## ACCESORIOS OPCIONALES Y/O COMPLEMENTARIOS







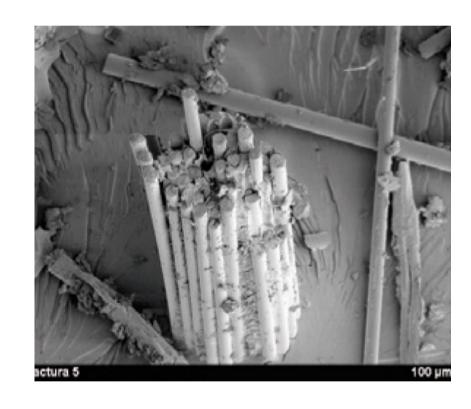




TAPA DE ESCOTILLAS INSPECCIÓN DE INSPECCIÓN



MANHOLLE DE ACCESO






## CUMPLIMOS CON NORMATIVAS

| <b>ESPECIFICACIONES</b>        | NORMA                   | VALOR                       |
|--------------------------------|-------------------------|-----------------------------|
|                                |                         |                             |
| Dureza Barcol                  | EN ISO 53270            | ≥50                         |
| Contenido en masa de Vidrio    | EN ISO 3451-1           | [63 – 71] %                 |
| Resistencia a la Tracción      | EN ISO 527-4            | [224 – 351] MPa             |
| Modulo elástico                | EN ISO 527-4            | [19.857 - 26.304] MPa       |
| Deformación a la rotura        | EN ISO 527-4            | [3,1 – 4,1] %               |
| Resistencia a la Flexión       | EN ISO 14125            | [279 – 468] MPa             |
| Módulo de flexión              | EN ISO 14125            | [20.924 - 22.746] MPa       |
| HDT                            | EN ISO 75-3             | [91,2 - 95,2] °C            |
| Densidad Composite             | EN ISO 1183-1, Método A | 1875 Kg/m³                  |
| Absorción H2O (2d)             | EN ISO 62, Método 1     | ≤0,2 %                      |
| Coef. Cond. Térmica; P. Burgos | EN ISO 11357-3          | 0,02694 W/m·K               |
| Coef. Transf. Calor; P. Burgos |                         | 0,58123 W/m <sup>2</sup> ·K |

#### ENSAYOS DE MICROSCOPIA ELECTRÓNICA DE BARRIDO SEM)











## VENTAJAS DE LOS TANQUES ESPESADORES Y DECANTADORES

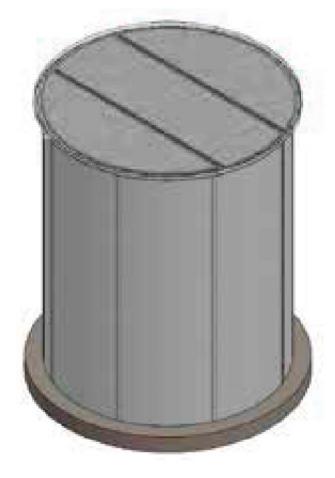
El dimensionado de un decantador se realiza a partir del caudal de agua a tratar y las características siendo los parámetros fundamentales el tiempo de residencia, el diámetro del decantador, altura total del decantador, altura del cono, diámetro interior del cono y ángulo del cono.

Finalmente, un espesador de fangos nos permite disminuir los costes de explotación de la propia depuradora.

También es posible tanto para agua potable como para agua residual el uso de decantadores lamelares. El empleo de lamelas con una inclinación adecuada facilita la separación de los sólidos en una menor superficie de instalación.






## DECANTADORES ESPECIFICACIONES TÉCNICAS



| Número de<br>placas | Superficie de Decantador para altura en metros |       |            |                |              |       |            |                |              |       |            |                |  |
|---------------------|------------------------------------------------|-------|------------|----------------|--------------|-------|------------|----------------|--------------|-------|------------|----------------|--|
|                     |                                                | H:    | =2         |                |              |       | H=3        |                | H=4          |       |            |                |  |
| Unidades            | Vol.<br>(m³)                                   | Ø (m) | Superficie | Peso<br>puente | Vol.<br>(m³) | Ø (m) | Superficie | Peso<br>puente | Vol.<br>(m³) | Ø (m) | Superficie | Peso<br>puente |  |
| 6                   | 29                                             | 4,3   | 15         | 875            | 44           | 4,3   | 15         | 900            | 59           | 4,3   | 15         | 925            |  |
| 7                   | 41                                             | 5,1   | 20         | 950            | 61           | 5,1   | 20         | 975            | 82           | 5,1   | 20         | 1.000          |  |
| 8                   | 52                                             | 5,8   | 26         | 1.050          | 78           | 5,8   | 26         | 1.075          | 104          | 5,8   | 26         | 1.100          |  |
| 9                   | 66                                             | 6,5   | 33         | 1.100          | 99           | 6,5   | 33         | 1.150          | 132          | 6,5   | 33         | 1.200          |  |
| 10                  | 82                                             | 7,2   | 41         | 1.200          | 122          | 7,2   | 41         | 1.250          | 163          | 7,2   | 41         | 1.300          |  |
| 11                  | 99                                             | 7,9   | 49         | 1.250          | 148          | 7,9   | 49         | 1.300          | 197          | 7,9   | 49         | 1.475          |  |
| 12                  | 117                                            | 8,6   | 59         | 1.350          | 176          | 8,6   | 59         | 1.400          | 235          | 8,6   | 59         | 1.450          |  |
| 13                  | 138                                            | 9,4   | 69         | 1.425          | 207          | 9,4   | 69         | 1.450          | 276          | 9,4   | 69         | 1.550          |  |
| 14                  | 160                                            | 10,1  | 80         | 1.500          | 240          | 10,1  | 80         | 1.550          | 320          | 10,1  | 80         | 1.600          |  |
| 15                  | 184                                            | 10,8  | 92         | 1.575          | 275          | 10,8  | 92         | 1.650          | 367          | 10,8  | 92         | 1.700          |  |
| 16                  | 209                                            | 11,5  | 104        | 1.650          | 313          | 11,5  | 104        | 1.700          | 418          | 11,5  | 104        | 1.750          |  |
| 17                  | 236                                            | 12,3  | 118        | 1.775          | 354          | 12,3  | 118        | 1.775          | 472          | 12,3  | 118        | 1.850          |  |
| 18                  | 264                                            | 13,0  | 132        | 1.800          | 396          | 13,0  | 132        | 1.850          | 529          | 13,0  | 132        | 1.900          |  |
| 19                  | 294                                            | 13,7  | 147        | 1.850          | 442          | 13,7  | 147        | 1.900          | 589          | 13,7  | 147        | 1.950          |  |
| 20                  | 326                                            | 14,4  | 163        | 1.900          | 489          | 14,4  | 163        | 1.950          | 653          | 14,4  | 163        | 2.000          |  |
| 21                  | 360                                            | 15,1  | 180        | 1.900          | 540          | 15,1  | 180        | 1.975          | 720          | 15,1  | 180        | 2.025          |  |
| 22                  | 395                                            | 15,9  | 197        | 1.925          | 592          | 15,9  | 197        | 2.000          | 790          | 15,9  | 197        | 2.075          |  |
| 23                  | 432                                            | 16,6  | 216        | 1.975          | 647          | 16,6  | 216        | 2.050          | 863          | 16,6  | 216        | 2.125          |  |
| 24                  | 470                                            | 17,3  | 235        | 2.025          | 705          | 17,3  | 235        | 2.100          | 940          | 17,3  | 235        | 2.175          |  |
| 25                  | 510                                            | 18,0  | 255        | 2.050          | 765          | 18,0  | 255        | 2.125          | 1.020        | 18,0  | 255        | 2.200          |  |
| 26                  | 551                                            | 18,7  | 276        | 2.075          | 827          | 18,7  | 276        | 2.150          | 1.103        | 18,7  | 276        | 2.225          |  |
| 27                  | 595                                            | 19,5  | 297        | 2.100          | 892          | 19,5  | 297        | 2.175          | 1.189        | 19,5  | 297        | 2.250          |  |
| 28                  | 640                                            | 20,2  | 320        | 2.125          | 959          | 20,2  | 320        | 2.200          | 1.279        | 20,2  | 320        | 2.275          |  |
| 29                  | 686                                            | 20,9  | 343        | 2.175          | 1.029        | 20,9  | 343        | 2.250          | 1.372        | 20,2  | 343        | 2.325          |  |
| 30                  | 734                                            | 21,6  | 367        | 2.225          | 1.101        | 21,6  | 367        | 2.300          | 1.468        | 21,6  | 367        | 2.375          |  |
| 31                  | 784                                            | 22,3  | 392        | 2.275          | 1.176        | 22,3  | 392        | 2.350          | 1.568        | 22,3  | 392        | 2.325          |  |
| 32                  | 835                                            | 23,1  | 417        | 2.325          | 1.253        | 23,1  | 417        | 2.400          | 1.671        | 23,1  | 417        | 2.475          |  |
| 33                  | 888                                            | 23,8  | 444        | 2.375          | 1.333        | 23,8  | 444        | 2.450          | 1.777        | 23,8  | 444        | 2.525          |  |
| 34                  | 943                                            | 24,5  | 471        | 2.425          | 1.415        | 24,5  | 471        | 2.500          | 1.886        | 24,5  | 471        | 2.575          |  |
| 35                  | 999                                            | 25,2  | 499        | 2.475          | 1.499        | 25,2  | 499        | 2.550          | 1.999        | 25,2  | 499        | 2.625          |  |
| 36                  | 1.057                                          | 25,9  | 528        | 2.500          | 1.586        | 25,9  | 528        | 2.600          | 2.115        | 25,9  | 528        | 2.700          |  |
| 37                  | 1.117                                          | 26,7  | 558        | 2.600          | 1.675        | 26,7  | 558        | 2.700          | 2.234        | 26,7  | 558        | 2.800          |  |
| 38                  | 1.178                                          | 27,4  | 589        | 2.700          | 1.767        | 27,4  | 589        | 2.800          | 2.356        | 27,4  | 589        | 2.900          |  |
| 39                  | 1.241                                          | 28,1  | 620        | 2.750          | 1.861        | 28,1  | 620        | 2.900          | 2.482        | 28,1  | 620        | 3.000          |  |
| 40                  | 1.305                                          | 28,8  | 652        | 2.850          | 1.958        | 28,8  | 652        | 2.950          | 2.610        | 28,8  | 652        | 3.050          |  |
| 41                  | 1.371                                          | 29,5  | 685        | 2.950          | 2.057        | 29,5  | 685        | 3.050          | 2.743        | 29,5  | 685        | 3.150          |  |
| 42                  | 1.439                                          | 30,3  | 719        | 3.050          | 2.159        | 30,3  | 719        | 3.150          | 2.878        | 30,3  | 719        | 3.250          |  |
| 43                  | 1.508                                          | 31,0  | 754        | 3.125          | 2.263        | 31,0  | 754        | 3.200          | 3.017        | 31,0  | 754        | 3.325          |  |
| 44                  | 1.579                                          | 31,7  | 789        | 3.200          | 2.369        | 31,7  | 789        | 3.300          | 3.159        | 31,7  | 789        | 3.400          |  |
| 45                  | 1.652                                          | 32,4  | 826        | 3.250          | 2.478        | 32,4  | 826        | 3.350          | 3.304        | 32,4  | 826        | 3.450          |  |
| 46                  | 1.726                                          | 33,2  | 863        | 3.325          | 2.589        | 33,2  | 863        | 3.425          | 3.452        | 33,2  | 863        | 3.525          |  |
| 47                  | 1.802                                          | 33,9  | 901        | 3.375          | 2.703        | 33,9  | 901        | 3.500          | 3.604        | 33,9  | 901        | 3.600          |  |
| 48                  | 1.880                                          | 34,6  | 939        | 3.450          | 2.703        | 34,6  | 939        | 3.550          | 3.759        | 34,6  | 939        | 3.650          |  |
| 50                  | 1.954                                          | 35,3  | 976        | 3.600          | 2.931        | 35,3  | 976        | 3.700          | 3.908        | 35,3  | 976        | 3.800          |  |
| 51                  | 2.033                                          | 36,0  | 1.016      | 3.700          | 3.049        | 36,0  | 1.016      | 3.850          | 4.066        | 36,0  | 1.016      | 3.900          |  |
| 52                  | 2.033                                          | 36,7  | 1.056      | 3.800          | 3.170        | 36,7  | 1.056      | 3.925          | 4.227        | 36,7  | 1.056      | 4.050          |  |
| 53                  | 2.113                                          | 37,4  | 1.030      | 3.850          | 3.170        | 37,4  | 1.030      | 3.975          | 4.227        | 37,4  | 1.030      | 4.030          |  |
| 53<br>54            | 2.193                                          | 38,1  | 1.139      | 3.900          | 3.419        | 38,1  | 1.139      | 4.025          | 4.558        | 38,1  | 1.139      | 4.150          |  |
| 54                  | 2.219                                          | JO, I | 1.139      | 5.300          | 3.419        | JO, I | 1.139      | 4.023          | 4.000        | JO, I | 1.139      | 4.130          |  |

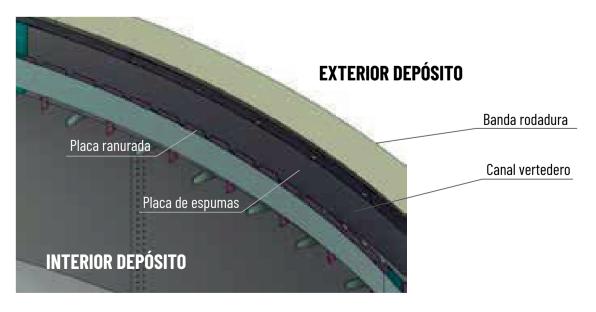
#### **CUBIERTAS**

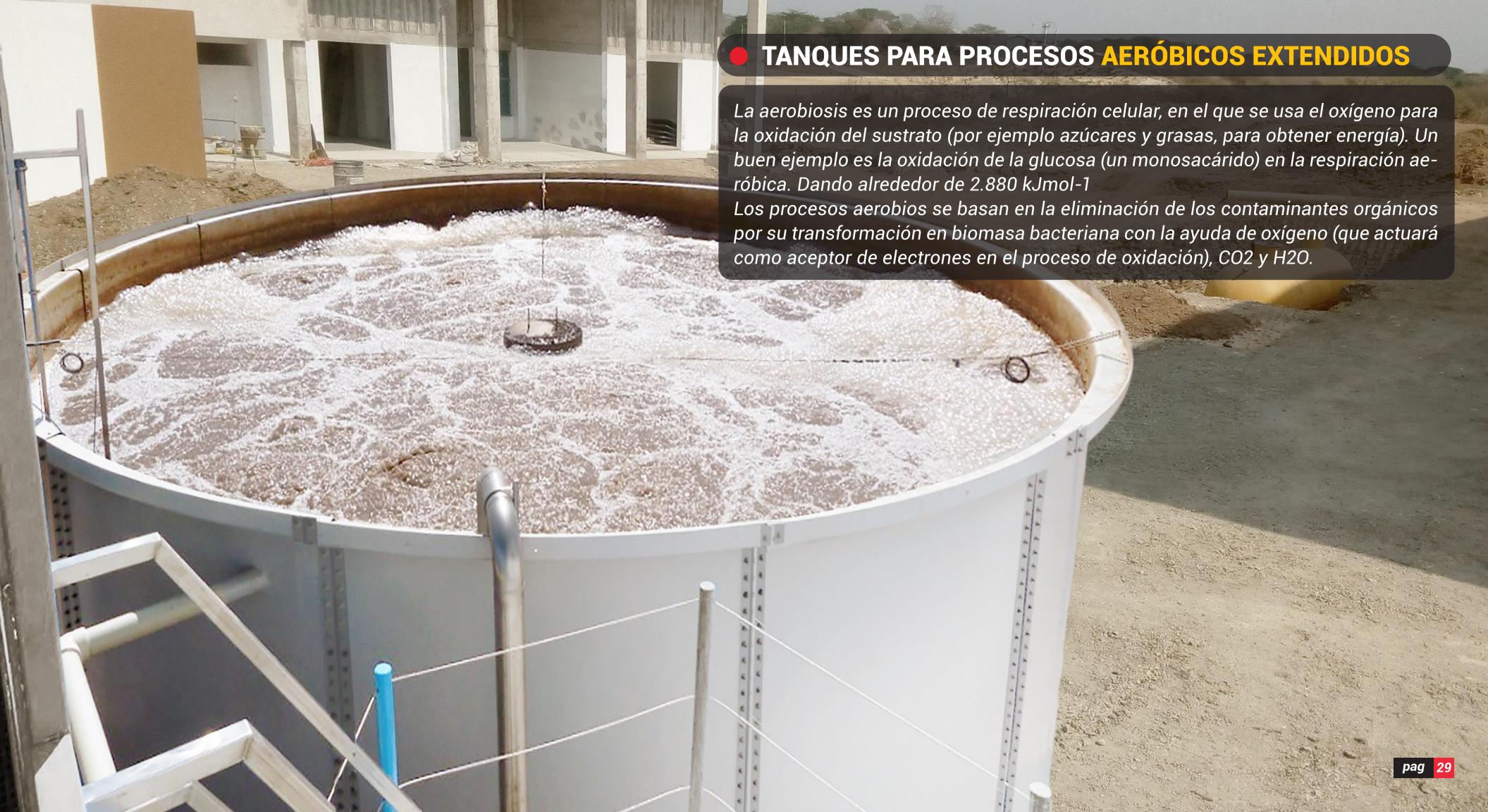
#### **PLANA**



VISTA ISOMÉTRICA DEL DEPÓSITO

#### **CÓNICA**





VISTA ISOMÉTRICA DEL DEPÓSITO

#### **DECANTADOR**

#### VISTA ISOMÉTRICA DEL DEPÓSITO

















Recibimos activos en la forma de pago

#### ¿Necesita financiación para su proyecto de tratamiento de aguas?

Reciba ya financiación hata del 60% con un plazo máximo de hasta 24 meses en todos nuestros productos, ofrecemos la mejor línea de crédito inmediata con los menores intereses del mercado, sin fiadores.

## LÍNEA DE CRÉDITO

Synertech Ofrece a todos nuestros clientes una línea de crédito directa hasta del 60% del valor total en todos sus productos, esta financiación maneja los intereses bancarios más bajos del mercado, adquiera su crédito diferido hasta 12 meses. rápido y simple, es el proceso de análisis para la obtención de nuestros créditos, nuestros asesores están a su disposición inmediato.



### LIBERACIÓN DE CAJA POR PARTE DEL CLIENTE

Synertech adquiere los activos de tratamiento de agua de propiedad del cliente, proporcionándole un flujo de caja al Cliente, el cual puede reinvertirlo en su negocio principal donde las tasas de rentabilidad son mayores

¡NO VENDEMOS UN PRODUCTO, OFRECEMOS UNA SOLUCIÓN!

